middCourses
Adv Intro to Stat and Data Sci
STAT 0201

Advanced Introduction to Statistical and Data Sciences An introduction to statistical methods and the examination of data sets for students with a background in calculus. Topics include descriptive statistics, elementary distributions for data, hypothesis tests, confidence intervals, and regression. Students develop skills in data cleaning, wrangling, visualization, and model fitting using the Statistical Software R. Emphasis will be placed on reproducibility. (MATH 0121 or APAB 4 or APBC 3, or by waiver) (Not open to students who have taken MATH 0116, MATH 0118, ECON 0111 (formerly ECON 0210), PSYC 0201, STAT 0116, STAT 0118, BIOL 1230, ECON 1230, ENVS 1230, FMMC 1230, HARC 1230, JAPN 1230, LNGT 1230, NSCI 1230, MATH 1230, SOCI 1230, LNGT 1230, PSCI 1230, WRPR 1230, or GEOG 1230.)

17 reviewsF24
Statistical Inference
MATH 0311

Statistical Inference An introduction to the mathematical methods and applications of statistical inference using both classical methods and modern resampling techniques. Topics will include: permutation tests, parametric and nonparametric problems, estimation, efficiency and the Neyman-Pearsons lemma. Classical tests within the normal theory such as F-test, t-test, and chi-square test will also be considered. Methods of linear least squares are used for the study of analysis of variance and regression. There will be some emphasis on applications to other disciplines. This course is taught using R.

3 reviewsS24
Statistical Inference
STAT 0311

Statistical Inference An introduction to the mathematical methods and applications of statistical inference using both classical methods and modern resampling techniques. Topics will include: permutation tests, parametric and nonparametric problems, estimation, efficiency and the Neyman-Pearsons lemma. Classical tests within the normal theory such as F-test, t-test, and chi-square test will also be considered. Methods of linear least squares are used for the study of analysis of variance and regression. There will be some emphasis on applications to other disciplines. This course is taught using R.

4 reviewsS24
Advanced Hierarchical Modeling
STAT 0712

Advanced Hierarchical Modeling (formerly MATH 0712) Hierarchical or multilevel models provide a principled way to model data that are naturally grouped in order to take advantage of the relationship between observations in the same group, but also allow for borrowing of information across groups. In this senior seminar, we will introduce a variety of multilevel models, with a balance between the theoretical and conceptual foundations, as well as implementation and interpretation of the results. This seminar will focus on multilevel linear and logistic models. Every student will write a senior capstone paper.

0 reviewsS24
Regression
MATH 0211

Regression Theory and Applications Regression is a popular statistical technique for making predictions and for modeling relationships between variables. In this course we will discuss the theory and practical applications of linear, log-linear, and logistic regression models. Topics include least squares estimation, coding for categorical predictors, analysis of variance, and model diagnostics. We will apply these concepts to real datasets using R, a statistical programming language. (MATH 0200; and MATH 0116 or MATH 0311) 3 hrs lect./disc.

0 reviewsF23
Probability
MATH 0310

Probability An introduction to the concepts of probability and their applications, covering both discrete and continuous random variables. Probability spaces, elementary combinatorial analysis, densities and distributions, conditional probabilities, independence, expectation, variance, weak law of large numbers, central limit theorem, and numerous applications.

7 reviewsF23
Bayesian Statistics
MATH 0412

Bayesian Statistics In this course, we will learn about the Bayesian paradigm of statistics, in which one’s inferences about parameters or hypotheses are updated as evidence accumulates. The goals of the course include understanding basic concepts of Bayesian inference; deriving posterior distributions; assessing the adequacy of Bayesian models; and effectively communicating results. Topics covered include one-parameter models, conjugacy, and Gibbs samplers. Real-world data and applications will feature heavily in this course. (MATH 0311) 2.5 hr. lect.

0 reviewsF23
Probability
STAT 0310

Probability An introduction to the concepts of probability and their applications, covering both discrete and continuous random variables. Probability spaces, elementary combinatorial analysis, densities and distributions, conditional probabilities, independence, expectation, variance, weak law of large numbers, central limit theorem, and numerous applications.

0 reviewsF23
Bayesian Statistics
STAT 0412

Bayesian Statistics (formerly MATH 0412) In this course, we will learn about the Bayesian paradigm of statistics, in which one’s inferences about parameters or hypotheses are updated as evidence accumulates. The goals of the course include understanding basic concepts of Bayesian inference; deriving posterior distributions; assessing the adequacy of Bayesian models; and effectively communicating results. Topics covered include one-parameter models, conjugacy, and Gibbs samplers. Real-world data and applications will feature heavily in this course. (MATH 0311 or STAT 0311) 2.5 hr. lect.

0 reviewsF23
Statistical Learning
MATH 0218

Statistical Learning This course is an introduction to modern statistical, machine learning, and computational methods to analyze large and complex data sets that arise in a variety of fields, from biology to economics to astrophysics. The theoretical underpinnings of the most important modeling and predictive methods will be covered, including regression, classification, clustering, resampling, and tree-based methods. Student work will involve implementation of these concepts using open-source computational tools.

6 reviewsS23
Statistical Inference
MATH 0311

Statistical Inference An introduction to the mathematical methods and applications of statistical inference using both classical methods and modern resampling techniques. Topics will include: permutation tests, parametric and nonparametric problems, estimation, efficiency and the Neyman-Pearsons lemma. Classical tests within the normal theory such as F-test, t-test, and chi-square test will also be considered. Methods of linear least squares are used for the study of analysis of variance and regression. There will be some emphasis on applications to other disciplines. This course is taught using R.

1 reviewS23
Introduction to Data Science
MATH 0118

Introduction to Data Science In this course students will gain exposure to the entire data science pipeline: forming a statistical question, collecting and cleaning data sets, performing exploratory data analyses, identifying appropriate statistical techniques, and communicating the results, all the while leaning heavily on open source computational tools, in particular the R statistical software language. We will focus on analyzing real, messy, and large data sets, requiring the use of advanced data manipulation/wrangling and data visualization packages. Students will be required to bring alaptop (owned or college-loaned) to class as many lectures will involve in-class computational activities. (formerly MATH216) 3 hrs lect./disc.

8 reviewsF22
Statistical Learning
MATH 0218

Statistical Learning This course is an introduction to modern statistical, machine learning, and computational methods to analyze large and complex data sets that arise in a variety of fields, from biology to economics to astrophysics. The theoretical underpinnings of the most important modeling and predictive methods will be covered, including regression, classification, clustering, resampling, and tree-based methods. Student work will involve implementation of these concepts using open-source computational tools.

2 reviewsF22
MATH031019 days ago

This was the hardest math class that I have ever taken. The exams were ridiculously difficult. It was a lot of work but I also feel like a great ton. The only issue was the difficulty of the assignments.

Fast-PacedTough GradingDifficult Exams
15hrs / week Hardcore difficulty Extremely high value Would take again
STAT03112 months ago

** This was with Stratton** One of my favorite professors and not the hardest of exams. all take home midterm and final along with a project but do able and helpful in office hours. Loves fishing too so kinda the goat

Fast-PacedFair Grading
4hrs / week Some difficulty Low value Would take again
MATH02182 months ago

This course is great for any STEM folks who want to get more experience with Rstudio and data analysis. I found the data sets and applications to be very interesting. The homeworks were very light with the tests being a little more difficult.

Fast-PacedFair GradingEasy Exams
5hrs / week Average difficulty Extremely high value Would not take again
Login to access 45 more reviews of Becky Tang